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E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .

• Solution: First, compute the current perceived loudness x ′ = 1
n

∑n
i=1 a2

i .
Then, output

√
x/x ′ · a1, . . . ,

√
x/x ′ · an with sufficient precision.

• Verification:
1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.

• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown
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B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.

• Observation: If point P is blocking the view of the edge of the island from point Q, you can see
more sea in P than Q.

• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.

• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.

• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:

• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown
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I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.

• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on
the path from the one to the other unit.

• Runtime: O(q · n), which is fast enough.
• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.

• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown
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D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown
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C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?

• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown
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T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).

• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown
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K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.

• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),
then calculate mink(maxp(d(k, p))).

• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.
• Run-time complexity: O(n2) (with n = h · w).
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then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.
• The rules of walking between plots are fixed given a destination plot p, so do floodfill (BFS/DFS)

starting from every destination plot p.
• From a plot a, walk to neighbouring plots b if, according to the procedure, you can walk from b to a

given the destination plot p.

• Run-time complexity: O(n2) (with n = h · w).
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K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).

Statistics: 31 submissions, 8 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.
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H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:

• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown
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J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.

• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown
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L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.
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• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.

• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown
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A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown
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G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown
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• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.

• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,
add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown
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3 per problem!)

• 165 jury solutions (last year: 177)
• The minimum2 number of lines the jury needed to solve all problems is

14 + 3 + 5 + 1 + 4 + 4 + 27 + 34 + 14 + 15 + 18 + 4 = 143

On average 11.9 lines per problem, up from 9.6 in BAPC 2021 or 6.6 in preliminaries 2022
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