
BAPC 2022

Solutions presentation

October 22, 2022



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .

• Solution: First, compute the current perceived loudness x ′ = 1
n

∑n
i=1 a2

i .
Then, output

√
x/x ′ · a1, . . . ,

√
x/x ′ · an with sufficient precision.

• Verification:
1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.

• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.

• Verification:
1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.

• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.
• Verification:

1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.

• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.
• Verification:

1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.

• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.
• Verification:

1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.
• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.
• Verification:

1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.
• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



E: Equalising Audio
Problem Author: Abe Wits

• Problem: Normalise the amplitudes a1, . . . , an to a perceived loudness of 1
n

∑n
i=1 a2

i = x .
• Solution: First, compute the current perceived loudness x ′ = 1

n
∑n

i=1 a2
i .

Then, output
√

x/x ′ · a1, . . . ,
√

x/x ′ · an with sufficient precision.
• Verification:

1
n

n∑
i=1

(
√

x/x ′ai)2 = x
x ′ · 1

n

n∑
i=1

a2
i = x

x ′ · x ′ = x .

• Exception: if x ′ = 0, return 0, . . . , 0.
• And apparently, we forgot to test the case -1 1, where the sum is 0

• Pitfall: multiplying two ints causes integer overflow, use long instead!

Statistics: 127 submissions, 50 accepted, 6 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.

• Observation: If point P is blocking the view of the edge of the island from point Q, you can see
more sea in P than Q.

• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.

• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.

• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



B: Bellevue
Problem Author: Ragnar Groot Koerkamp

• Problem: Given the profile of an island, find the point with the largest viewing angle of the sea.
• Observation: If point P is blocking the view of the edge of the island from point Q, you can see

more sea in P than Q.
• The answer is always an angle from the start/end of the island to another point.
• Solution: take the maximum angle around the start/end.

• Alternative solution: compute the convex hull and iterate over it.

Statistics: 102 submissions, 41 accepted, 18 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:

• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:

• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:
• Convert both wind directions into degrees d1 ≥ d2.

• Observation: For every extra letter the degrees it represents halves:
45, 22.5, 11.25, 6.125, . . ..

• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:
• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..

• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:
• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:
• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



F: Failing Flagship
Problem Author: Ruben Brokkelkamp

• Problem: Compute the minimum angle in degrees between two
wind directions.

• Solution:
• Convert both wind directions into degrees d1 ≥ d2.
• Observation: For every extra letter the degrees it represents halves:

45, 22.5, 11.25, 6.125, . . ..
• Return min(d2 − d1, 360 + d1 − d2).

• Remark: Only 29 characters are needed for the required precision.

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Statistics: 144 submissions, 39 accepted, 21 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.

• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on
the path from the one to the other unit.

• Runtime: O(q · n), which is fast enough.
• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.

• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.
• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on

the path from the one to the other unit.
• Runtime: O(q · n), which is fast enough.

• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.
• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.
• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on

the path from the one to the other unit.
• Runtime: O(q · n), which is fast enough.

• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.
• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.
• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on

the path from the one to the other unit.
• Runtime: O(q · n), which is fast enough.

• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.
• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).

• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values
smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.
• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on

the path from the one to the other unit.
• Runtime: O(q · n), which is fast enough.

• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.
• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



I: Imperfect Imperial Units
Problem Author: Abe Wits

• Problem: Convert values from one unit to another.
• Solution: For every query, do a breadth-/depth-first search, multiplying all conversion ratios on

the path from the one to the other unit.
• Runtime: O(q · n), which is fast enough.

• Faster solution: Precalculate (or cache) the conversion ratio between all pairs of units.
• Runtime: O(n2) to precalculate and O(1) per query, so O(n2 + q).

• Smallest/largest results are 10±303, which fits in double (limit: 9 · 10±307).
• Pitfall: In C++, people used cout << fixed << setprecision(12). However, for values

smaller than 10−6, this gives too low (relative) precision. . .

Statistics: 163 submissions, 31 accepted, 69 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!

• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).

• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).

• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).

• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



D: Dividing DNA
Problem Author: Ragnar Groot Koerkamp

• Problem: Given a set of forbidden (present) intervals, partition [0, n) into as many disjoint
(absent) intervals as possible.

• Observation 1: If an interval is forbidden, all shorter intervals are also forbidden!
• Observation 2: Each interval only needs to be just long enough to be allowed (absent).
• Greedy solution: Start with [0, 1), and keep growing the interval until it is allowed, say [0, a).
• Then start a new interval [a, a + 1), and keep growing it until it is allowed, say [a, b).
• Continue until reaching the end. This uses exactly n queries in total.

Statistics: 32 submissions, 10 accepted, 17 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?

• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.

• Time to code any x consecutive characters (without saving) =
time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))

• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).

• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



C: Crashing Competition Computer
Problem Author: Jorke de Vlas

• Problem: What is the expected time to write c characters of code on a crash-prone computer?
• Solution: Dynamic programming over the length of the code.
• Time to code any x consecutive characters (without saving) =

time to write x − 1 characters + 1 + expected time needed to recover from crashing:

T (x) = T (x −1)+1+p · (r +T (x)) = T (x − 1) + 1 + p · r
1 − p or T (x) = r + 1

p · ((1−p)−x −1)

• Calculate time to code all characters between position 0 and x ,
minimising the total time by trying to click “Save” after character k:

DP(x) = min
(

T (x), min
0≤k≤x

(
DP(k) + t + T (x − k)

))
• Final answer is DP(c) + t (because we should save the code at the end, costing t time).
• Run-time complexity: O(c2)

Statistics: 56 submissions, 10 accepted, 35 unknown



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.

• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),
then calculate mink(maxp(d(k, p))).

• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.
• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.
• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.
• The rules of walking between plots are fixed given a destination plot p, so do floodfill (BFS/DFS)

starting from every destination plot p.
• From a plot a, walk to neighbouring plots b if, according to the procedure, you can walk from b to a

given the destination plot p.

• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).



K: Kiosk Construction
Problem Author: Reinier Schmiermann

• Problem: Find the optimal kiosk position for a given camping layout.
• Solution: Find the shortest path from every kiosk location k to every plot p (d(k, p)),

then calculate mink(maxp(d(k, p))).
• But, doing n2 times BFS/DFS from every possible kiosk location to every plot is too slow (O(n3)).

• Optimisation: Calculate distances the other way around: from every plot to every kiosk location.

• Run-time complexity: O(n2) (with n = h · w).

Statistics: 31 submissions, 8 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Observation 1: Every node can have at most one edge
with house number 1 starting at it.

• Observation 2: Because the number of nodes is equal
to the number of edges the graph contains exactly one
cycle.

• Observation 3: The cycle has to be oriented clockwise
or counterclockwise.

• Observation 4: The cycle has trees attached to it for
which the house number 1 has to face outward.



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:

• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:
• First, find the cycle.

• Orient cycle clockwise and propagate house numbers
through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:
• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:
• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:
• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



H: House Numbering
Problem Author: Reinier Schmiermann

• Problem: Given a graph with n nodes and edges, and h
house numbers for an edge, determine whether house
numbers can be assigned such that there is no
intersection where two edges start with the same house
number.

• Solution:
• First, find the cycle.
• Orient cycle clockwise and propagate house numbers

through trees. Check if this is valid, i.e., there are no
two equal high house numbers at a node.

• If not ok, orient cycle counter clockwise and check
validity.

• If one of the two works, print it. Otherwise, print
“impossible”.

Statistics: 31 submissions, 5 accepted, 15 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.

• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.

• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?

• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!
• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.

• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.
• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.
• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!

• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.
• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



J: Jagged Skyline
Problem Author: Reinier Schmiermann

• Problem: Given w ≤ 10 000 integers 0 ≤ hi ≤ 1018, find the maximum in at most 12 000 queries:
“Is integer hi less than y?”

• First idea: binary search per column: n · log2(n) queries.
• Only search the range above the current maximum?
• In fact, we can only do 1.2 query per column. Most columns must be handled in 1 query exactly!

• Better idea: First test if a column is better than the current best. If not, skip it.
• Problem: The maximum could increase in each column!

• Solution: Randomize the order of columns! Now, only ln(w) increments are expected!
• Total expected queries: n + ln(w) · log2(n).

Statistics: 140 submissions, 7 accepted, 80 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!

• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce

• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in
each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce
• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in

each box.

• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce
• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in

each box.
• Problem: The minimum distance may cross a boundary between boxes.

• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce
• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in

each box.
• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.

• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce
• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in

each box.
• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.

• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Naive quadratic solution is too slow, and sweepline methods are complicated!
• To get a faster solution, make use of the fact that the input is random.
• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106. 1

• Solution: Local bruteforce
• Split the volume into 100 × 100 × 100 boxes of size 107 × 107 × 107, and iterate over the pairs in

each box.
• Problem: The minimum distance may cross a boundary between boxes.
• Solution: Iterate over all pairs of points in touching boxes as well.
• Expected running time: O(k · (n/k)2 + k) = O(n2/k + k), where k is the number of boxes.
• Note: due to the birthday paradox, there will practically always be a box with at least 2 points.

1Or at least, almost always ;-)



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Solution: Local bruteforce



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.

• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.

• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.

• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.

• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.
• Sort the points by x . The average x-distance between two points is 109/n = 104.

• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.
• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.

• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.
• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



L: Lowest Latency
Problem Author: Reinier Schmiermann

• Problem: Given n = 105 random points in V = [0, 109)3, find the shortest distance between two
points.

• Observation: Because the points are i.i.d. uniformly random, the answer is less than 106.
• Alternative solution 1: Divide & Conquer.

• Sort the points by x and split into two groups of size n/2. Solve the two halves by recursively
splitting in half-sized groups.

• Let d be the best solution found recursively. Consider all pairs of points within distance d from the
boundary to handle the merge step.

• Alternative solution 2: Sorted bruteforce.
• Sort the points by x . The average x-distance between two points is 109/n = 104.
• Points > 100 positions apart are expected to have distance > 100 · 104 = 106.
• Consider all pairs of indices (i , j) with |i − j| ≤ 100 for an O(100n) solution.

Statistics: 63 submissions, 10 accepted, 35 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.

• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.

• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).

• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is
still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

. . . v . . .

. . . av . . .

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



A: Adjusted Average
Problem Author: Ludo Pulles

• Problem: Given n ≤ 1500 integers ai , remove at most k ≤ 4 of them to get an average as close
as possible to the target x .

• When removing exactly 0 ≤ ℓ ≤ k numbers, we need to find ℓ integers with sum as close as
possible to Sℓ =

∑
i ai − ℓ · x .

• For ℓ ≤ 2: iterate over all combinations −→ O(nℓ/ℓ!) time.
• For ℓ = 3, 4: this is too slow so use meet-in-the-middle:

Pu = {ai + aj | i < j < u}

u

au

. . . v . . .

. . . av . . .

• For ℓ = 3: loop over u = 1, . . . , n, update Pu and then take s ∈ Pu closest to Sℓ − au.
• Use an ordered set (BBST) for Pu, giving the time complexity O(n2 log n).
• For ℓ = 4: For fixed u, loop over v with v > u and pick s ∈ Pu closest to Sℓ − au − av . This is

still O(n2 log n).

Statistics: 25 submissions, 3 accepted, 13 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.

• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.

• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.

• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.
• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.

• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too
slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.

• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.
• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.

• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.
• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.

• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,
add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.

• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.
• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



G: Grinding Gravel
Problem Author: Daan van Gent, Onno Berrevoets

• Problem: Given n ≤ 100 integers, split them into groups of size k ≤ 8 making as few cuts as
possible.

• Equivalent problem: Given n integers, partition them into as many groups as possible with sum a
multiple of k.

• Greedy 1: Each number x ≥ k is replaced by x mod k. Count the numbers with each remainder.
• Greedy 2: For x < k/2, we can pair up x and k − x . Each x = 0 is its own group.
• We are left with at most 4 different values: 1 or 7, 2 or 6, 3 or 5, and at most one 4.
• Now, do a DP on state [c1, . . . , ck−1], the counts for each remainder.

• For each precomputed (minimal) subset with sum 0 mod k remove it and recurse.
• Simpler alternative: Merge the largest remainder with another one, and update the state. → Too

slow when counts are 1 × 4, 30 × 5, 30 × 6, 30 × 7.
• Instead: merge the least-occurring element with one of the others.
• Even simpler: remove any one of the remaining elements. If this makes the total sum be 0 mod k,

add one.
• Instead of 4-deep nested loops, we can use a dictionary of tuples.

Statistics: 5 submissions, 1 accepted, 1 unknown



Language stats

C C++ Java Kotlin Python 3
0

25

50

75

100

125

150

175 correct
wrong answer
timelimit
run error
pending



Random facts

Jury work

• 721 commits, of which 434 for the main contest

• 604 secret test cases (last year: 693) (= 50 1
3 per problem!)

• 165 jury solutions (last year: 177)
• The minimum2 number of lines the jury needed to solve all problems is

14 + 3 + 5 + 1 + 4 + 4 + 27 + 34 + 14 + 15 + 18 + 4 = 143

On average 11.9 lines per problem, up from 9.6 in BAPC 2021 or 6.6 in preliminaries 2022



Random facts

Jury work

• 721 commits, of which 434 for the main contest
• 604 secret test cases (last year: 693) (= 50 1

3 per problem!)

• 165 jury solutions (last year: 177)
• The minimum2 number of lines the jury needed to solve all problems is

14 + 3 + 5 + 1 + 4 + 4 + 27 + 34 + 14 + 15 + 18 + 4 = 143

On average 11.9 lines per problem, up from 9.6 in BAPC 2021 or 6.6 in preliminaries 2022



Random facts

Jury work

• 721 commits, of which 434 for the main contest
• 604 secret test cases (last year: 693) (= 50 1

3 per problem!)
• 165 jury solutions (last year: 177)

• The minimum2 number of lines the jury needed to solve all problems is

14 + 3 + 5 + 1 + 4 + 4 + 27 + 34 + 14 + 15 + 18 + 4 = 143

On average 11.9 lines per problem, up from 9.6 in BAPC 2021 or 6.6 in preliminaries 2022



Random facts

Jury work

• 721 commits, of which 434 for the main contest
• 604 secret test cases (last year: 693) (= 50 1

3 per problem!)
• 165 jury solutions (last year: 177)
• The minimum2 number of lines the jury needed to solve all problems is

14 + 3 + 5 + 1 + 4 + 4 + 27 + 34 + 14 + 15 + 18 + 4 = 143

On average 11.9 lines per problem, up from 9.6 in BAPC 2021 or 6.6 in preliminaries 2022

2After codegolfing



Thanks to:

The proofreaders

Jaap Eldering
Kevin Verbeek
Mark van Helvoort
Nicky Gerritsen
Thomas Verwoerd

The jury

Boas Kluiving
Jorke de Vlas
Ludo Pulles
Maarten Sijm
Ragnar Groot Koerkamp
Reinier Schmiermann
Ruben Brokkelkamp
Wessel van Woerden

Want to join the jury? Submit to the Call for Problems of BAPC 2023 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

